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Abstract
The effects of disorder (or free-orientation) using the discrete velocity model
for the possible (dynamical) localization of (plane) sound waves propagating in
dilute monatomic hard-sphere gases are presented. Comparison with previous
fixed-orientation (θ = 0) results show that there exists a certain gap in
the spectra when the disorder or free-orientation exists and when a periodic
medium with a gap (in spectra) is (slightly) randomized (like our orientation-
free 4-velocity case) possible localization occurs in the vicinity of the edges of
the gap.

PACS numbers: 34.10.+x, 02.30.Jr, 02.30.Mv, 34.50.-s, 43.35.Ae, 43.20.El

1. Introduction

Emerging interest in wave propagation in random, disordered and granular media has recently
stimulated intensive research. Work on both theory and measurement is in rapid progress,
acoustical analogues considering continuum mechanical and quantum mechanical approaches
included [1–3]. Note that studies of classical wave mechanical systems have some important
advantages over quantum mechanical wave systems even when there are similarities between
them. In a mesoscopic system, where the sample size is smaller than the mean free path
for elastic scattering, it is satisfactory for a one-electron model to solve the time-independent
Schrödinger equation

− h̄2

2m
∇2ψ + V ′(�r)ψ = Eψ

or (after dividing by −h̄2/2m)

∇2ψ + [q2 − V (�r)]ψ = 0 (1)
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where q is an (energy) eigenvalue parameter, which for the quantum mechanical system is√
2mE/h̄2. Meanwhile, the equation for classical (scalar) waves is

∇2ψ − 1

c2

∂2ψ

∂t2
= 0

or after applying a Fourier transform in time and contriving a system where c (the wave speed)
varies with position �r

∇2ψ + [q2 − V (�r)]ψ = 0. (2)

Here, the eigenvalue parameter q is ω/c0, where ω is a natural (or an eigen-)frequency and
c0 is a reference wave speed. Comparing the time dependencies one sees the quantum and
classical relation E = h̄ω [3].

The control and observability of the classical experimental analogues may be matched
by analytical works or numerical simulations. However, classical systems could be used to
study time-dependent potential fields and nonlinear effects, which are very difficult and time-
consuming to treat numerically or analytically. Motivated by the analogy between electrons
in periodic or disordered metals and waves in classical acoustical systems an investigation for
observing classical (Anderson) localization [4] using the discrete velocity model was performed
and will be presented here.

The plane (sound) wave propagation in dilute monatomic (hard-sphere) gases has been
successfully investigated by continuous and/or discrete velocity models since the 1960s [5,6]
(please see the detailed references therein). Relevant initial and/or boundary value problems,
i.e. the former being central to the analytical or numerical approach because of the propagation
of the forced sound from a certain origin, while the latter being almost related to the
experimental environment due to the sensors and transducers somewhere downstream, must
be well defined and then solved to obtain the complex spectra or dispersion relations (real
part: sound dispersion, imaginary part: sound attenuation or absorption) [5,6]. In comparison
with experiments, results of the continuous velocity approach gave a better fit than the discrete
velocity one [5, 6]. The integral form of the former, however, may smooth out some peculiar
phenomena or only give bulk physical behaviour considering the continuous distribution of
molecular velocities. The discrete form of the latter, i.e. molecular velocities (and thus the
associated number density) being a finite set while keeping the space and time continuous,
provides us possibilities to adjust the discrete velocity, for example its free orientation in the
2D plane (or a kind of disorder for co-planar velocity models), and solve relevant problems to
gain more physical insights for specific interests. For instance, a molecular beam interacting
with surfaces (solids or liquids) will normally depend on some specific incident or reflecting
angles. Sound propagation in random or disordered media might be another case [2, 3]. We
noticed that similar efforts, but employing the lattice gas model [7], have been reported recently
which, because of the symmetry of the lattice, varied the orientation from θ = 0 to π/4.

Our previous attempts used fixed-orientation discrete velocity models and, after comparing
with experiments, gave rather physical fits, especially for the 4-velocity model [5, 6]. In this
paper, we set the 4-velocity model to be orientation-free which could be thought of as a kind
of disorder and then re-examine the dispersion relations (complex spectra) for the ultrasound
propagation in hard-sphere (monatomic) gases. Sound waves are presumed to be plane waves.
We note that, in a certain sense (on some length scale) a vortex could be treated as a combination
of concentrated vorticity (core) with its surrounding irrotational fluid (flow) [8]. Thus, they
could be, in a certain sense, similar to the hard-sphere particles when the elastic scattering or
collisions for a system of them is being considered. Thus, our study here may give clues to
sound propagation in a system of discrete vortices or vortex gases. Our preliminary results
show that for θ = 0 and π/4, θ being a disorder parameter, there exist gaps of spectra and
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possible (dynamical) localization which are similar to those reported in [1–4]. Our (discrete
kinetic) approach, as it includes the non-uniform variation of those transport coefficients such
as viscosity and thermal conductivity which are related to the mean free path of the gas [6,7] and
cannot be handled by using the continuum mechanic or simple quantum mechanic approaches
(e.g., that by Kirkpatrick [1]), will thus give researchers greater insight into similar problems.

2. Formulations

We assume that the gas is composed of identical particles of the same mass. The velocities
of these particles are restricted to, for example, u1,u2, . . . ,up, where p is a finite positive
integer. The discrete number density of particles are denoted by Ni(r, t) associated with the
velocity ui at point r and time t . If only nonlinear binary collisions are considered, using the
microreversibility property which will be defined later and considering the evolution of Ni ,
we have

∂Ni

∂t
+ ui · ∇Ni =

p∑
j=1

∑
(k,l)

(A
ij

klNkNl − Akl
ijNiNj ) i = 1, . . . , p

where (k, l) are admissible sets of collisions. We may then define the right-hand side of the
above equation as

Qi(N) = 1
2

∑
j,k,l

(A
ij

klNkNl − Akl
ijNiNj )

with i ∈ � ={1, . . . , p}, and the summation is taken over all j, k, l ∈ �, where A
ij

kl are
non-negative constants satisfying

A
ji

kl = A
ij

kl = A
ij

lk indistinguishability of the particles in collision

A
ij

kl(ui + uj − uk − ul) = 0 conservation of momentum in the collision

A
ij

kl = Akl
ij microreversibility condition.

The conditions defined for the discrete velocity above requires that elastic binary collisions,
such that momentum and energy are preserved ui +uj = uk +ul , |ui |2 + |uj |2 = |uk|2 + |ul|2,
are possible for 1 � i, j, k, l � p.

The collision operator is now simply obtained by joiningAkl
ij to the corresponding transition

probability densities aklij through Akl
ij =S|ui − uj | aklij , where,

aklij � 0
p∑

k,l=1

aklij = 1 ∀i, j = 1, . . . , p

with S being the effective collisional cross-section and the same order of magnitude as that (a,
radius of hard-sphere scatters) used by Kirkpatrick [1]. If all q (p = 2q) outputs are assumed
to be equally probable, then aklij =1/q for all k and l, otherwise aklij = 0.

The term S|ui − uj |dt is the volume spanned by the molecule with ui in the relative
motion w.r.t. the molecule with uj in the time interval dt . Therefore, S|ui −uj |Nj is the
number of j -molecules involved in the collision in unit time.

Collisions which satisfy the conservation and reversibility conditions which have been
stated above are defined as an admissible collision.

Thus, the model of the discrete Boltzmann equation [5, 6, 9, 10] is a system of 2n(= p)

semilinear partial differential equations of the hyperbolic type:

∂

∂t
Ni + ui · ∂

∂x
Ni = 2cS

n

n∑
j=1

NjNj+n − NiNi+n i = 1, . . . , 2n (3)
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whereNi = Ni+2n are unknown functions, and ui = c(cos[θ+(i−1)π/n], sin[θ+(i−1)π/n]);
c is the reference velocity modulus and has the same order of magnitude as that (c, the sound
speed in the absence of scatters) used by Kirkpatrick [1], θ is the orientation starting from the
positive x-axis to the u1 direction and could be thought of as a parameter for introducing a
disorder (cf [5, 6, 9]).

Since passage of the sound wave causes a small departure from equilibrium (Maxwellian
type) resulting in energy loss owing to internal friction and heat conduction, we linearize the
above equations around a uniform Maxwellian state (N0) by settingNi(t,x) = N0[1+Pi(t,x)],
where Pi is a small perturbation. After some manipulations [5, 6], we have{
∂2

∂t2
+ c2 cos2

[
θ +

(m − 1)π

n

]
∂2

∂x2
+ 4cSN0

∂

∂t

}
Dm = 4cSN0

n

n∑
k=1

∂

∂t
Dk (4)

whereDm = (Pm+Pm+n)/2, m = 1, . . . , n, sinceD1 = Dm for 1 = m (mod 2n). We are ready
to look for the solutions in the form of the plane wave Dm= am exp i(kx−ωt), (m = 1, . . . , n),
with ω=ω(k). This is related to the dispersion relations of 1D forced ultrasound propagation
of the rarefied gases problem. Consequently we have{

1 + ih − 2λ2 cos2

[
θ +

(m − 1)π

n

]}
am − ih

n

n∑
k=1

ak = 0 m = 1, . . . , n (5)

with

λ = kc/(
√

2ω)

h = 4cSN0/ω ∝ 1/Kn
(6)

where h is the rarefaction parameter of the gas; Kn is the Knudsen number which is defined
as the ratio of the mean free path of gases to the wavelength of ultrasound [5, 6].

Let am = C/(1 + ih − 2λ2 cos2[θ + (m − 1)π/n]), where C is an arbitrary, unknown
constant, since here we are only interested in the eigenvalues of the above relation. The
eigenvalue problems for different a 2n-velocity model reduces to Fn (λ) = 0, or

1 − ih

n

n∑
m=1

1

1 + ih − 2λ2 cos2
[
θ + (m−1)π

n

] = 0. (7)

We only solve n = 2 here, i.e. the 4-velocity case. The corresponding eigenvalue equations
become of algebraic polynomial form with the complex roots being the results of λ.

For the 2 × 2-velocity model, we obtain

1 − (ih/2)
2∑

m=1

1/{1 + ih − 2λ2 cos2 [θ + (m − 1)π/2]} = 0. (8)

3. Results and discussions

As θ �= 0, the complex-coefficient polynomial (equation for λ) obtained from equation (8)
now has a degree of 4 instead of 2 for the fixed-orientation case (θ = 0) [5,6]. Note that from
equation (8) as θ = 0, cos(π/2) = 0 for the m = 2 situation, thus we got a second-order
polynomial. The complex-root finding procedure thus becomes much more complicated than
before. After verifying our new results (θ �= 0), i.e. once we can recover θ = 0 results from
equation (8), we then solve equation (8) step by step to get the complete (complex) spectra
from θ = 0 up to π/2. We only present those of θ up to π/4 as spectra of orientation effects
are symmetric w.r.t. θ = π/4 after our checking [9, 10]. They are shown in figures 1–4.
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Figure 1. Orientational effects (θ ) on the dispersion (λr ).

We can observe that, the smaller (absolute values ofλ) branch (propagation of sound mode)
or lower values of both λr and λi (figures 1 and 2) show a continuous trend as θ increases toward
π/4. The dispersion (λr ; a relative measure of the sound or phase speed) keeps increasing
while the attenuation or absorption (λi) keeps decreasing as θ increases from 0. At θ = π/4,
there is no attenuation and dispersion [9], i.e. λr = 1.0 and λi = 0.0. The latter result, if it is
physical, could only be verified by the molecular-beam test, since the molecular distribution
for a molecular beam is always in a Maxwellian form [5, 6]. This result also provides a good
verification for the experimental side mentioned in [1–3] (acoustical analogue here) as there is
no loss for this particular case (θ being a disorder parameter but fixed as π/4). We also notice
that around h ∼ 1, as shown in figure 2, there exists a trend for the absence of diffusion (λi
starts decreasing rapidly).

Meanwhile, for the larger (absolute values of λ) branch (the anomalous one which is
similar to the propagation of the diffusion mode or entropy wave reported in [5, 6]) or higher
values of both real and imaginary roots (figures 3 and 4), there is a discontinuity near θ = 0.
Once θ increases from zero, there exists a gap. Spectra (both λr and λi) will span from the
far infinity and then approach the asymptotic case θ = 0.7853 (near π/4) which accounts for
the propagation of the diffusion mode or entropy wave as verified in [5,6]. Note that from the
definition of h or Kn, h = fcollision/fsound, where fsound (cf that used by Kirkpatrick [1]) is
related to the classical ω as mentioned in the introduction (cf equations (1) and (2)) so that it is
relevant to the energy E as defined for the localization, thus we can estimate the localization
length from those figures which vary with h. The localization length (ξ depending on the
internal frequency) defined by Kirkpatrick [1] is proportional to the (hydrodynamic) mean free
path c · l (l also depends on the internal frequency) and, comparing the definition of h here, is
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Figure 2. Orientational effects (θ ) on the attenuation (λi ).
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Figure 3. Orientational effects (θ ) on the anomalous dispersion (λr ).
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Figure 4. Orientational effects (θ ) on the anomalous attenuation (λi ).

thus related to the inverse of h we used. In fact, Kirkpatrick [1] obtained the expression of ξ by
setting ω → 0 (cf equation (5.1b) therein). Based on these considerations and equations (1)
and (2), the relation for the (possible) localization length versus the frequency extracted from
our results (especially in figure 2; the attenuation or absorption defined here is related to the
inverse measure of (say, one wave) length; the maximum absorption then corresponds to the
minimum localization length in figure 5(a) of [1] by Kirkpatrick) length is qualitatively similar
to that reported by Kirkpatrick [1].

To briefly conclude, since our calculations are orientation dependent, they may also give
more clues to the reconstruction of a time-reversed acoustic field (via the angular spectrum), an
experimental set-up for ultrasound transducers or the understanding of sound propagation in
microscopically random, disordered or granular media [11]. The possible localized behaviour
of the spectra (for the larger values) near θ = 0 and π/4 for different branches of the spectra
seems to be the same as the acoustic analogue of the localization found elsewhere [1–4] since
the physical length-scale parameter used here is the mean free path of the molecular gases
subjected to continuous collisions. The results presented here, in fact, as the characteristics of
our approach are similar to that mentioned by Figotin and Klein [4], show that when a periodic
medium with a gap (in resulting spectra) is (slightly) randomized (like our orientation-free 4-
velocity case) [12], possible (Anderson) localization occurs in the vicinity of the edges of the
gap (like that of π/4 here) [13]. As we only consider plane waves propagating in a hard-sphere
gas, which is a kind of hard (Neumann) scatterer [13], then it is interesting that our results for
the dispersion relation [10] resemble those of the Neumann cases (especially figure 9 in [13])
presented by Condat and Kirkpatrick.
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